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EUROPIUM OXYCHLORIDE ABSORPTION SPECTROSCOPY 
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m a  
The temperature dependence of the features which arise from the 7F0,1 - 'D3 

absorption transitions in EuOCI as seen by diffuse-reflectance spectroscopy has 

been investigated. The  transitions shift linearly to higher energy with increasing 

temperature. The ratio of the intensities of the transitions arising from the 7F0 

state to those arising from the 7F, state also appears to be a linear function of 

temperature. 
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I074 STUMP ET AL. 

INTRODUCIION 

High temperature and extremely low temperature determinations of absorption 

maxima have proven difficult, inconvenient, or impossible in many cases. However, 

as discussed in a recent study of the diffuse reflectance spectrum from EuOCl at 

77 Ic' many of the difficulties may be overcome through the use of an allquartz 

fiberoptic probe placed in direct contact with the sample. In this previous work, it 

was suggested that the temperature dependence of the spectroscopic features 

might be of use as an optical probe of temperature. Spectroscopic methods using 

diamond? ruby,3 or a lanthanide compound' have been employed in our laboratory 

for the determination of temperature and/or pressure. In such cases, changes in 

the positions or intensities of Raman features or in the positions, intensities, or 

luminescent lifetimes of emission features have been used as indicators of change 

in the environment (temperaturelpressure) in which the compound is placed. 

EuOCl is an ideal candidate for use as an environmentally sensitive compound. 

The compound is structurally and chemically stable in air from liquid helium 

temperature up to over loo0 K. The invariability of its structure and chemical 

composition over a wide range of temperature removes the two major 

contributions which have the greatest effect on the electronic spectrum of a 

lanthanide material; thus the smaller shifts induced by changes in temperature 

and/or pressure may be studied and exploited. The electronic spectrum of EuOCl 

is very well known and is made up of narrow features which can be studied by 

either absorbanceheflectance or emission spectroscopy. Synthetic procedures to  

obtain a powdered sample of EuOCl are moderately straightforward. In 

combination with a remote all-quartz fiberoptic probe, as in this case, the EuOCI 

temperature probe may be placed in various caustic or imconvenient environments 

and still facilitate reflectance, Raman, or  luminescence spectroscopic determination 

of temperature. 
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EXPERIMENTAL DlDAILS 

A powdered sample of EuOCI was prepared by heating EuC136H,0 in air at 

400-450 OC.’ The crystal structure of the EuOCl sample was confirmed by phonon 

R a m a d  and Eu3+ ion emission  pattern^.^ The EuOCl sample was loaded into a 

quartz tube with an inside diameter of -4  mm, slightly larger than that of an all- 

quartz fiberoptic probe which has been described previously.a9 Briefly, the 

construction of the probe entailed the fusion under vacuum of four, 600 pm 

diameter quartz fibers within a heavy-walled quartz tube (the vacuum prevents the 

formation of air pockets during the fusion step). Once cooled, the tip of the 

probe was cut perpendicular to  the  length of the tube, then polished t o  a smooth 

finish with successively finer grades of emery paper. The fiber optic probe was 

then inserted into the quartz tube in direct contact with the EuOCl sample. The 

combined apparatus along with a Pt-Pt/lO% R h  thermocouple for temperature 

calibration was then inserted into either an adjustable furnace or a liquid nitrogen 

cooled air stream. The light from a tungsten lamp (ORIEL, model 66181) was 

focused through a microscope objective into the end of the single illumination 

fiber of the probe. The diffuse reflectance was collected by the three remaining 

fibers and focused upon the entrance slit of a 1-meter double monochromator 

(Jobin Yvon-Instruments S& model HG.;?S), which has a resolution of 0.5 cm-’ at 

514.5 nm. The light exiting the monochromator was focused onto a cooled 

photomultiplier tube (Hamamatsu, model R636). The output of the 

photomultiplier tube was amplified and processed with standard pulse counting 

electronics. Data were stored using a multichannel analysis system (Nicolet, model 

1170) and processed by means of an AT personal computer using “Spectra Calc” 

software (Galactic Industries Corp.). 

RESULTS AND DISCUSSION 

The diffuse reflectance spectra exhibited by the Eu” ion’s ’F0,,-’D3 absorption 

transitions at  various temperatures from 77 t o  1088 K are shown in Figure 1. 
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FIG 1. Partial Diffuse Reflectance Spectrum of EuOCl 
at Various Temperatures (K). 
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FIG 2. Schematic Diagram of the Eu3+ Ion Energy Levels of Interest. 
(Irreducible Representations are Given in Parentheses) 

These transitions are shown schematically in Figure 2 and described in detail in 

Reference 1. At low temperatures the lowest energy transition disappears due to 

the lowering of the population of the excited state from which it arises. At high 

temperatures the thermal noise from the  furnace overwhelms the reflectance of 

the sample. Modulation of the source and lock-in amplification of the sample's 

reflectance over the constant noise from the furnace might allow for useful 

measurements at still higher temperatures. 

Transition Enerw vs. Temperature 

The transition energies all shift toward higher energy with increasing 

temperature (see Fig. 1). It has been suggested by Dieke'' that shifts in transition 

energy (peak position) are due to a lessening of the effect of the crystal field, 

which results from the thermal expansion of the crystal. Thus, as temperature is 
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1078 STUMP ET AL. 

increased, the crystal expands, the crystal field at the Eu3+ ion site is lessened. and 

the spectrum approaches that expected for a "free" Eu3' ion. 

It was also suggested by Dieke'' that the shift toward the free ion spectral 

peak position should exhibit exponential characteristics. This was not observed in 

the present study. Plots of observed peak position versus temperature for each of 

the five studied transitions are given in Figure 3. With the exception of the lowest 

energy transition, a plot of peak position versus temperature is linear. This result 

may be due to collecting the data over the nearly linear, asymptotic portion of an 

exponential curve. However, the near linearity of this relationship can be used to 

monitor temperature spectroscopically. 

Ratio of Absorution Intensities vs. Temoerature 

The populations of the single level making up the 7F0 ground state and the two 

levels comprising the 7F, state should be describable by the Boltzmann distribution 

function. The magnitude of the absorption from these three levels, being 

proportional to  their populations, should also be described by such a function. 

This being the case, the natural logarithm of the ratio of the intensities of the 

absorption from two of the levels should be proportional to  the reciprocal of the 

absolute temperature [In(A,/A,) + In(gdg,) a (&-El)/K * lm, if the energy 

difference between the levels remains constant (the temperature effect on this 

energy difference is on  the order of 1.5 cm'*/100 K). The variable g, is the 

degeneracy of the n& electronic level and is constant. In Figure 4a are plotted 

the natural logarithm of the ratio of absorption intensities of some of the 

transitions arising from levels of the 7F0 and 7F, states [In(Integrated Intensity of 

'F,,=-'D, transitiodfntegrated Intensity of 'F,-'D3 transition)] versus the reciprocal 

absolute temperature (1m K'). At temperatures up  to  about 350 K (77 "C), the 

data remain approximately linear. However, above that temperature, the data 

appear to show an exponential deviation from the  linearity exhibited at lower 

temperature. 
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FIG 3. Plot of Absorption Transition Energy (Peaks I-V as Defined in Figure 2) 
Versus Temperature (K). 
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FIG 4. (a) Plot of In(1ntensity Ratio) Versus Inemperatwe (K') and 
(b) Plot of Intensity Ratio Versus Inemperatwe (K'). 
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This lack of linearity at higher temperatures may be related to the energy 

difference between the two levels in question. In such an exponential function as 

that derived above from the Boltzmann distribution, a small difference in the 

energies of the two levels should facilitate measurements at low temperatures, 

while a large difference should yield better results at higher temperatures. Such a 

sensitivity has been Seen in the case of a diamond temperature prok ,*  which has 

an energy difference on the order of 1300 em” between the energy levels involved 

and yielded better results at higher, rather than lower, temperatures (800 to 1200 

K).* In the present case, the energy difference is only between 250 and 400 cm-’ 

(depending upon the 7F1 level employed), and the linearity of a plot of the 

In(intensity ratio) versus lhemperature is maintained only to  350 K 

The lack of linearity above 350 K greatly limits the usefulness of this method 

as a spectral probe of temperature. However, since the deviation appears to  be 

exponential, a similar plot of the absorption intensity ratio (rather than the natural 

logarithm of the ratio) versus the reciprocal absolute temperature may yield more 

useful results. Such plots are shown in Figure 4b, where it can be seen that the 

linearity of the relationship is greatly improved over that seen in Figure 4a. No 

simple explanation for this enhanced linearity is readily apparent. Neither case 

exhibits the degree of linearity observed in the plot of transition energy versus 

temperature (see Figure 3). 

CONCLUSIONS 

At least two linear relationships between temperature and measured spectral 

properties of EuOCl have been identified. AU absorption transitions exhibit linear 

shifts t o  higher energies with increasing temperature. Also a ratio of the 

absorption intensities of the transitions can be linearly related t o  the reciprocal of 

the absolute temperature. The first of these relationships can be used when 

EuOCl is employed as a spectral monitor of temperature. The second, while 

exhibiting a linear relationship, cannot be reliably employed in such a method. 
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