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EUROPIUM OXYCHLORIDE ABSORPTION SPECTROSCOPY
AS AN OPTICAL PROBE OF TEMPERATURE’
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ABSTRACT

The temperature dependence of the features which arise from the "Fy; = °D,
absorption transitions in EuOCI as seen by diffuse-reflectance spectroscopy has
been investigated. The transitions shift linearly to higher energy with increasing
temperature. The ratio of the intensities of the transitions arising from the ’F,

state to those arising from the 'F, state also appears to be a linear function of

temperature.
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INTRODUCTION

High temperature and extremely low temperature determinations of absorption
maxima have proven difficult, inconvenient, or impossible in many cases. However,
as discussed in a recent study of the diffuse reflectance spectrum from EuOC] at
77 K.! many of the difficulties may be overcome through the use of an all-quartz
fiberoptic probe placed in direct contact with the sample. In this previous work, it
was suggested that the temperature dependence of the spectroscopic features
might be of use as an optical probe of temperature. Spectroscopic methods using
diamond,? ruby,® or a lanthanide compound* have been employed in our laboratory
for the determination of temperature and/or pressure. In such cases, changes in
the positions or intensities of Raman features or in the positions, intensities, or
luminescent lifetimes of emission features have been used as indicators of change
in the environment (temperature/pressure) in which the compound is placed.

EuOCl is an ideal candidate for use as an environmentally sensitive compound.
The compound is structurally and chemically stable in air from liquid helium
temperature up to over 1000 K. The invariability of its structure and chemical
composition over a wide range of temperature removes the two major
contributions which have the greatest effect on the electronic spectrum of a
lanthanide material; thus the smaller shifts induced by changes in temperature
and/or pressure may be studied and exploited. The electronic spectrum of EuOCI
is very well known and is made up of narrow features which can be studied by
either absorbance/reflectance or emission spectroscopy. Synthetic procedures to
obtain a powdered sample of EuOCl are moderately straightforward. In
combination with a remote all-quartz fiberoptic probe, as in this case, the EuOCI
temperature probe may be placed in various caustic or inconvenient environments
and still facilitate reflectance, Raman, or luminescence spectroscopic determination

of temperature.
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EXPERIMENTAL DETAILS

A powdered sample of EuOC| was prepared by heating EuCl;+6H,0 in air at
400-450 °C.° The crystal structure of the EuOCI sample was confirmed by phonon
Raman® and Eu** ion emission patterns.” The EuOCI sample was loaded into a
quartz tube with an inside diameter of ~4 mm, slightly larger than that of an all-
quartz fiberoptic probe which has been described previously.* Briefly, the
construction of the probe entailed the fusion under vacuum of four, 600 gm
diameter quartz fibers within a heavy-walled quartz tube (the vacuum prevents the
formation of air pockets during the fusion step). Once cooled, the tip of the
probe was cut perpendicular to the length of the tube, then polished to a smooth
finish with successively finer grades of emery paper. The fiber optic probe was
then inserted into the quartz tube in direct contact with the EuOCl sample. The
combined apparatus aiong with a Pt-Pt/10% Rh thermocouple for temperature
calibration was then inserted into either an adjustable furnace or a liquid nitrogen
cooled air stream. The light from a tungsten lamp (ORIEL, model 66181) was
focused through a microscope objective into the end of the single illumination
fiber of the probe. The diffuse reflectance was collected by the three remaining
fibers and focused upon the entrance slit of a 1-meter double monochromator
(Jobin Yvon-Instruments SA, model HG.2S), which has a resolution of 0.5 cm?! at
514.5 nm. The light exiting the monochromator was focused onto a cooled
photomuitiplier tube (Hamamatsu, model R636). The output of the
photomultiplier tube was amplified and processed with standard pulse counting
electronics. Data were stored using a multichannel analysis system (Nicolet, model
1170) and processed by means of an AT personal computer using "Spectra Calc"
software (Galactic Industries Corp.).

RESULTS AND DISCUSSION
The diffuse reflectance spectra exhibited by the Eu** ion’s 'Fy; =D, absorption

transitions at various temperatures from 77 to 1088 K are shown in Figure 1.
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FIG 1. Partial Diffuse Reflectance Spectrum of EuOCI
at Various Temperatures (K).
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FIG 2. Schematic Diagram of the Eu** Ton Energy Levels of Interest.
(Irreducible Representations are Given in Parentheses)

These transitions are shown schematically in Figure 2 and described in detail in
Reference 1. At low temperatures the lowest energy transition disappears due to
the lowering of the population of the excited state from which it arises. At high
temperatures the thermal noise from the furnace overwhelms the reflectance of
the sample. Modulation of the source and lock-in amplification of the sample’s
reflectance over the constant noise from the furnace might allow for useful

measurements at still higher temperatures.

Transition Energy vs. Temperature

The transition energies all shift toward higher energy with increasing
temperature (see Fig. 1). It has been suggested by Dieke'? that shifts in transition
energy (peak position) are due to a lessening of the effect of the crystal field,

which results from the thermal expansion of the crystal. Thus, as temperature is
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increased, the crystal expands, the crystal field at the Eu®* ion site is lessened, and
the spectrum approaches that expected for a "free” Eu®” ion.

It was also suggested by Dieke'? that the shift toward the free ion spectral
peak position should exhibit exponential characteristics. This was not observed in
the present study. Plots of observed peak position versus temperature for each of
the five studied transitions are given in Figure 3. With the exception of the lowest
energy transition, a plot of peak position versus temperature is linear. This result
may be due to collecting the data over the nearly linear, asymptotic portion of an
exponential curve. However, the near linearity of this relationship can be used to

monitor temperature spectroscopically.

Ratio of Absorption Intensities vs. Temperature

The populations of the single level making up the ’F, ground state and the two
levels comprising the ’F, state should be describable by the Boltzmann distribution
function. The magnitude of the absorption from these three levels, being
proportional to their populations, should also be described by such a function.
This beihg the case, the natural logarithm of the ratio of the intensities of the
absorption from two of the levels should be proportional to the reciprocal of the
absolute temperature (In(A/A;) + In(gy/g,) = (E,-E,)/K * 1/T}, if the energy
difference between the levels remains constant (the temperature effect on »this
energy difference is on the order of 1.5 cm'/100 K). The variable g, is the
degeneracy of the nth electronic level and is constant. In Figure 4a are plotted
the natural logarithm of the ratio of absorption intensities of some of the
transitions arising from levels of the "F; and 'F, states [In(Integrated Intensity of
"Foy="Dj transition/Integrated Intensity of "F,=’D, transition)] versus the reciprocal
absolute temperature (1/T K'). At temperatures up to about 350 K (77 °C), the
data remain approximately linear. However, above that temperature, the data
appear to show an exponential deviation from the lincarity exhibited at lower

temperature.
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This lack of linearity at higher temperatures may be related to the energy
difference between the two levels in question. In such an exponential function as
that derived above from the Boltzmann distribution, a small difference in the
energies of the two levels should facilitate measurements at low temperatures,
while a large difference should yield better results at higher temperatures. Such a
sensitivity has been seen in the case of a diamond temperature probe,? which has
an energy difference on the order of 1300 cm™ between the energy levels involved
and yielded better results at higher, rather than lower, temperatures (800 to 1200
K).2 In the present case, the energy difference is only between 250 and 400 cm’!
(depending upon the ’F, level empioyed), and the linearity of a plot of the
In(intensity ratio) versus 1/temperature is maintained only to 350 K.

The lack of linearity above 350 K greatly limits the usefulness of this method
as a spectral probe of temperature. However, since the deviation appears to be
exponential, a similar plot of the absorption intensity ratio (rather than the natural
logarithm of the ratio) versus the reciprocal absolute temperature may yield more
useful results. Such plots are shown in Figure 4b, where it can be seen that the
linearity of the relationship is greatly improved over that seen in Figure 4a. No
simple explanation for this enhanced linearity is readily apparent. Neither case
exhibits the degree of linearity observed in the plot of transition energy versus

temperature (see Figure 3).

CONCLUSIONS

At least two linear relationships between temperature and measured spectral
properties of EuOCI have been identified. All absorption transitions exhibit linear
shifts to higher energies with increasing temperature. Also a ratio of the
absorption intensities of the transitions can be linearly related to the reciprocal of
the absolute temperature. The first of these relationships can be used when
EuOCl is employed as a spectral monitor of temperature. The second, while

exhibiting a linear relationship, cannot be reliably employed in such a method.
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